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Abstract 

Purpose: To establish a clinically applicable genomic clustering system, we investigated the interactive 
landscape of driver mutations in intrahepatic cholangiocarcinoma (ICC). 
Methods: The genomic data of 1481 ICCs from diverse populations was analyzed to investigate the pair-wise 
co-occurrences or mutual exclusivities among recurrent driver mutations. Clinicopathological features and 
outcomes were compared among different clusters. Gene expression and DNA methylation profiling datasets 
were analyzed to investigate the molecular distinctions among mutational clusters. ICC cell lines with different 
gene mutation backgrounds were used to evaluate the cluster specific biological behaviors and drug 
sensitivities. 
Results: Statistically significant mutation-pairs were identified across 21 combinations of genes. Seven most 
recurrent driver mutations (TP53, KRAS, SMAD4, IDH1/2, FGFR2-fus and BAP1) showed pair-wise 
co-occurrences or mutual exclusivities and could aggregate into three genetic clusters: Cluster1: represented 
by tripartite interaction of KRAS, TP53 and SMAD4 mutations, exhibited large bile duct histological phenotype 
with high CA19-9 level and dismal prognosis; Cluster2: co-association of IDH/BAP1 or FGFR2-fus/BAP1 mutation, 
was characterized by small bile duct phenotype, low CA19-9 level and optimal prognosis; Cluster3: 
mutation-free ICC cases with intermediate clinicopathological features. These clusters showed distinct 
molecular traits, biological behaviors and responses to therapeutic drugs. Finally, we identified S100P and 
KRT17 as “cluster-specific”, “lineage-dictating” and “prognosis-related” biomarkers, which in combination with 
CA19-9 could well stratify Cluster3 ICCs into two biologically and clinically distinct subtypes. 
Conclusions: This clinically applicable clustering system can be instructive to ICC prognostic stratification, 
molecular classification, and therapeutic optimization. 
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Introduction 
Intrahepatic cholangiocarcinoma (ICC) is a 

highly intractable biliary tract cancer (BTC) 
originating from the epithelial cells of intrahepatic 
biliary trees, which is anatomically distinguished 
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from extrahepatic cholangiocarcinoma (ECC). ICC 
also remains as the second most common primary 
liver cancer (PLC) following hepatocellular carcinoma 
(HCC) [1, 2]. Although ICC is more prevalent in 
eastern and southeastern Asian countries, such as 
China and Thailand [3], its incidence and mortality 
are increasing globally in recent decades [4-6]. With 
highly invasive and metastatic phenotype, ICC 
patients are mostly diagnosed at advanced stages 
with dismal outcome despite receiving standard 
chemotherapy. Surgical resection is the only curative 
treatment strategy for early stage ICCs, but a high rate 
of loco-regional recurrence and distant metastasis also 
constrain their long-term survival [7]. 

Various etiological factors, including viral 
hepatitis infection, metabolic liver disease, type 2 
diabetes mellitus (T2DM), primary sclerosing 
cholangitis (PSC), liver fluke infection and 
hepatolithiasis, are known to be involved in the 
heterogeneous tumorigenic process of ICC [8, 9]. And 
different cellular origins further contribute to its high 
histological complexity. Supporting this notion, some 
ICCs originate from mature cholangiocytes of large 
bile ducts and display major similarities to ECC, while 
the other subtypes originate from small bile ductules 
or progenitor cells in the Canal of Hering and even 
show some traits of HCC [2]. The diversities of 
etiologies and cellular origins indicate the 
complicated mechanisms during ICC tumorigenesis. 
The development of an effective classification system 
for the clinical practice of ICC is thus urgently needed. 

Based on comprehensive genomic characteri-
zation, the mutational landscape of ICC is emerging 
in recent years with the discovery of multiple driver 
mutations, which is different from that of ECC or 
HCC, and shows higher diversity [10-25]. In addition, 
specific etiological and ethnical factors also exacerbate 
the discrepancy between Eastern and Western 
countries. For example, TP53, KRAS and SMAD4 
mutations have been identified as the most recurrent 
mutations in ICCs from Eastern countries with the 
prevalence of liver fluke, viral hepatitis and 
hepatolithiasis [11, 13, 16, 19-21, 23]; in contrast, 
mutations without clear etiological factors, such as 
IDH1/2, BAP1, PBRM1 mutations and FGFR2 fusion 
are more prevalent in Western countries [12, 17, 18, 21, 
22, 25]. All these factors have inevitably added the 
difficulty for the establishment of a clinically 
applicable classification for ICC. 

From a genetic perspective, cancer evolves 
through the emergence and selection of various 
genetic alterations [26]. It has been estimated that 
average 4 (ranging from 1-10) driver mutations are 
needed for tumor development under positive 
selection [27]. During this process, gene mutations do 

not occur randomly. Functionally antagonistic 
mutations are likely to be selected exclusively of each 
other, whereas synergistic alterations are frequently 
co-selected and observed together in certain tumor 
subtypes. This evidence suggests the existence of an 
underlying network of functional dependencies 
between driver mutations with potential biological 
and clinical impacts. To date, large-scale genetic 
profiling of human cancers has provided evidence of 
non-random patterns of co-occurrence and mutual 
exclusivity among specific oncogenic mutations, 
which sheds insightful light on cancer evolution 
[28-30], and can clinically guide molecular 
classification [31, 32], prognostication [33, 34] and 
therapeutic stratification [35-38]. For ICC, the 
systematic discovery of driver mutations and their 
relationships is, however, far from elucidation, which 
is mainly due to lack of sufficient clinical specimens.  

In the present study, we found that seven most 
recurrent mutations (TP53, KRAS, SMAD4, IDH1/2, 
FGFR2-fus and BAP1) showed pair-wise 
co-occurrences or mutual exclusivities in ICC, and 
could aggregate into three genomic clusters with 
distinct clinicopathological and molecular features, 
biological behaviors and therapeutic vulnerabilities. 
By integrative analysis, we further proposed a 
clinically and molecularly relevant “seven-mutation 
and three-marker” based clustering system, which 
provided framework for a stable, reproducible and 
clinically applicable ICC clustering strategy. 

Materials and Methods 
ICC patients and genetic mutation data 

In order to develop a reliable and clinically 
applicable mutational clustering system for ICC, we 
conducted a network-based analyses in search for the 
cooperative or antagonistic mutational pairs, with a 
discovery and validation design (Figure 1A-B).  

The discovery cohort included 805 ICCs from 24 
recent publications (2013-2020) with various etiologies 
and races (Table S1). Any suspected ECC (including 
perihilar cholangiocarcinoma or distal cholangio-
carcinoma), gallbladder cancer (GBC), HCC or 
combined hepatocellular-cholangiocarcinoma (CHC) 
cases were excluded from the final analysis. The 
detection methods for somatic mutations included 
selected targeting sequencing (STS), whole exome 
sequencing (WES) and whole genome sequencing 
(WGS). For STS cohort, only samples with > 50 
cancer-related genes detected were included, and 
samples without detailed information on specific gene 
mutations were excluded. For WES/WGS cohort, all 
the mutated genes were collected, and the number of 
non-synonymous mutations was calculated. More 
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detailed information about sequencing data 
processing is described in the online supplementary 
materials and methods. To avoid the undue effects of 
samples with high mutation burden on subsequent 
analyses, samples with hyper-mutational phenotype 
(non-synonymous mutations > 300/sample) in the 
WES/WGS cohort were also excluded from further 
analysis. For cases with clinical information available, 
individual level clinicopathological parameters 

(including sex, age, CA19-9 level, UICC/AJCC Stage 
and tumor size) and clinical outcomes (including 
overall survival and recurrence-free survival) were 
also acquired from the original publications (Table 
S2). Finally, genes sequenced in at least 70% of 
samples with mutation frequency > 2% in the 
discovery cohort were included for further analyses in 
search for the cooperative or antagonistic mutational 
pairs. 

 

 
Figure 1. Co-occurrence and mutual exclusivity analysis of driver gene mutations identified 3 clusters of ICC. (A) Schematic overview of the study design. (B) 
Schematic of the gene-gene correlation algorithm. (C) Correlation between mutations found in 22 genes associated with ICC pathogenesis. Correlation coefficients and 
associated q values are indicated by the size of circles and color gradient as indicated. Because the status of FGFR2-fus was not detected for all samples, so the results regarding 
the correlation of FGFR2-fus with other mutations should still be interpreted with caution. (D) The co-mutated network modules of the 21 significantly correlated gene mutation 
pairs. Within the network, the nodes represent mutant genes and the edges between pathways represent their co-mutation relationship. The size of a node is proportional to 
the mutation rate of this gene. The thickness of an edge is proportional to the significance level (q value) of co-mutation between the two genes. (E) Construction of 3 mutational 
clusters based on the co-occurring and mutual exclusivity of driver mutations in WES/WGS cohort including 505 patients. Key clinical characteristics are indicated, including 
original cohort, age, gender, race, etiology, CA19-9, tumor size, AJCC stage and outcome. 
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Internal validation cohort included 225 ICC 
patients who underwent surgical resection (n = 217) 
or tissue biopsy (n = 8) at the authors’ institute. Two 
pathologists independently evaluated hematoxylin 
and eosin-stained slides and confirmed the diagnosis 
of ICC. The clinicopathological features were 
summarized in Table S2. Tumor stage was classified 
according to the 8th TNM stage of the UICC/AJCC. 
The mutational status of clustering genes was 
detected using NGS platform (n = 102) (Table S3) or 
Sanger sequencing (n = 123). More detailed 
information about sequencing data processing is 
described in the online supplementary materials and 
methods. This study was approved by the Ethics 
Committee of Huashan Hospital, Fudan University, 
and all subjects agreed with informed consent to 
participate in the study. 

Two independent ICC cohorts with distinct 
ethnic backgrounds were recruited for external 
validation. Cohort 1 including 212 ICCs from 
Memorial Sloan-Kettering Cancer Center (MSKCC) 
was from the ‘Genomics, Evidence, Neoplasia, 
Information, Exchange’ (GENIE version 3.0.0) project 
initiated by the American Association for Cancer 
Research (AACR) [39]. For 158 cases in this cohort, 
individual level clinical and outcome information was 
download from the cbioportal database 
(https://www.cbioportal.org/study/summary?id=c
hol_msk_2018). Cohort 2 including 239 ICC patients 
mainly from Eastern Asian countries was obtained 
from the Thailand Initiative in Genomics and 
Expression Research for Liver Cancer (TIGER-LC) 
and International Cancer Genome Consortium (ICGC) 
projects. Their genetic profiles and clinicopathological 
features were acquired from the original publications 
(Table S2) [19, 20].  

An ECC cohort including 178 ECCs with 
survival data available from The Cancer Genome 
Atlas (TCGA) and ICGC projects was used as a 
control in the subsequent survival analysis (Table S2) 
[18, 19]. 

Gene expression profiling datasets of CCAs 
A total of nine gene expression profiling datasets 

of CCA were enrolled for this study. Various 
techniques of the expression profiling were applied in 
the nine cohorts. For further details regarding the 
included datasets, please refer to Table S4. 
Enrichment scores were calculated based on the 
classifier gene lists to estimated the expression 
enrichment of different CCA signatures. 

Global DNA methylation profiling datasets of 
ICCs 

Three independent datasets of ICC global gene 

methylation profile were included, all of which were 
performed using Human Methylation450 BeadChip 
assays (Illumina, USA). The first combined cohort 
including 56 ICCs from Fudan University and Mayo 
Clinic (GSE32079) as we previously reported [40]. The 
second cohort including 56 ICCs was from Singapore 
and Romania (GSE49656) [11]. The third cohort was 
from ICGC cohort including 88 ICCs from multiple 
regions (GSE89803) [19]. The details of the above 
included DNA methylation profiling datasets for 
analysis were summarized in Table S4. After the 
normalization step, probes that were differentially 
methylated between IDH1/2 mutant and wild-type 
ICCs were obtained using the standard two-sample 
t-test with unequal variance and sample size. To 
adjust for multiple comparisons, we applied the 
Benjamini-Hochberg method to control the False 
Discovery Rate at 5%. We further filtered the list of 
significant CpGs by retaining those which exhibited at 
least 20% difference in methylation β-value between 
mutant and wild-type in our final comparisons.  

Statistical analysis 
Analysis was performed with the Statistical 

Package for the Social Sciences (SPSS) v 15.0 software 
for Windows (SPSS, Chicago, IL, USA). All categorical 
results were presented as number and percentage and 
all continuous variables were presented as the median 
and range. The continuous and categorical variables 
were compared using the Fisher’s exact test and 
Manne Whitney U test. OS and RFS were compared 
with the Kaplan-Meier method, and the significance 
was determined by the log-rank test. The Cox 
regression model was applied to evaluate the effect of 
each clinical variable and the mutational cluster on OS 
and RFS. Hazard ratios were calculated with 
adjustments for clinicopathological characteristics. 
Significance was determined at a two-sided p level of 
0.05, except for p values in multiple comparisons, 
which was adjusted according to the method 
described by Benjamini-Hochberg. 

Results 

The interactive landscape of driver gene 
mutations in ICC 

The discovery cohort included 505 WES/WGS 
and 300 STS cases (covering 90-497 genes). In total, 22 
genes tested in at least 70% of samples and with 
mutation frequency > 2% were selected for further 
analysis (Figure S1 and Table S5). Among them, the 
most recurrently mutated genes were TP53, KRAS, 
IDH1/2, ARID1A, BAP1, PBRM1, FGFR2 fusion, 
CDKN2A, SMAD4, PIK3CA, EPHA2 (mutation 
frequency > 5%). We used Fisher’s exact test among 
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all pairs of the 22 driver genes to search for 
statistically significant mutual exclusivity and 
co-occurrence. All pairs of these mutations were 
tested without imposing any prior biological 
knowledge (Figure 1B). To this end, statistically 
significant mutation-pairs (co-occurrences or mutual 
exclusivity) were found across 21 combinations of 
mutated genes, including 12 positive and 9 negative 
associations (Figure 1C-D).  

Pair-wise correlations of seven driver genes 
defined three mutational clusters 

We then focused on the correlations of the most 
recurrently mutated genes. Among them, we found a 
strong tendency towards pair-wise co-occurrence of 
TP53, KRAS and SMAD4 mutations. Strikingly, 
IDH1/2, BAP1 mutations and FGFR2-fusion tend to be 
mutually exclusive with TP53, KRAS and SMAD4 
mutations, while BAP1 mutations showed a strong 
tendency towards co-occurrence with IDH1/2 
mutations and FGFR2-fusions. By contrast, no such 
pair-wise associations were found in other recurrently 
mutated genes such as ARID1A, PBRM1, CDKN2A, 
PIK3CA and EPHA2. Given their high mutation 
frequencies and strong pair-wise associations, the 
seven genes (TP53, KRAS, SMAD4, IDH1/2, 
FGFR2-fus and BAP1) were selected to construct the 
basis of a mutational clustering system, Cluster1 with 
at least one mutation of KRAS/TP53/SMAD4 
mutations, irrespective of other mutations; Cluster2 
with at least one mutation of IDH/FGFR2-fus/BAP1 
mutations and without KRAS/TP53/SMAD4 
mutations; Cluster3 with all the above genes being 
wild-type.  

Then we clustered the 505 cases with WES/WGS 
data from the discovery cohort according to the 
proposed strategy. 167 (33.1%) and 117 (23.2%) cases 
harbored Cluster1 and Cluster2 mutations, 
respectively (Table S6). Cluster1 mutation and 
Cluster2 mutation show mutual exclusivity with 
strong statistical significance (OR = 0.0903, P < 
0.0001). Other significantly mutated pathways or 
complexes, such as PI3K/AKT pathway 
(PIK3CA/PTEN) and SWI/SNF complex (ARID1A, 
PBRM1, ARID2 and SMARCA4) mutations, tended to 
universally distribute among the clusters and were 
not appropriate for mutational clustering (Figure 1E). 
In Cluster1 cases, we observed a significantly higher 
tumor mutation burden (TMB) in TP53/SMAD4 
mutant cases but not in KRAS mutant cases (Figure 
S2). This prompted us to further divide Cluster1 into 
two sub-clusters, Cluster1A with KRAS mutation, 
irrespective of other mutations (intermediate TMB), 
and Cluster1B with TP53/SMAD4 mutations and 
wild-type KRAS (high TMB). For Cluster2 mutant 

cases, depending on targetable IDH1/2 mutations or 
FGFR2-fus, we further divide Cluster2 into three 
sub-clusters, Cluster2A with IDH1/2 mutation, 
irrespective of other mutations, Cluster2B with 
FGFR2-fus and Cluster2C with BAP1 mutation and 
wild-type IDH1/2 or FGFR2.  

The robustness of the mutational cluster was 
validated in different cohorts 

To validate the robustness of the mutational 
clustering system, we first investigated the cases with 
STS data from the discovery cohort. Of 263 ICC cases 
with all the seven genes detected in this cohort, the 
mutation frequency of Cluster1 and Cluster2 genes 
was 36.9% (97/263) and 27.8% (73/263), respectively. 
Cluster1 mutation and Cluster2 mutation also tend to 
be mutually exclusive with statistical significance (OR 
= 0.1629, P < 0.0001, Figure S3A).  

Then we validated this result in 3 additional 
cohorts. The internal validation cohort including 225 
ICCs from our institute, with 41.3% (93/225) 
harboring Cluster1 mutations and 17.8% (40/225) 
harboring Cluster2 mutations (Table S7). The 
mutually exclusive pattern of Cluster1 and Cluster2 
genes was statistically significant (OR = 0.0259, P < 
0.0001, Figure S3B). The second cohort included 
NGS-based sequencing data of 212 ICC patients from 
Western countries (MSKCC cohort), and the third 
cohort included NGS-panel based sequencing data of 
239 ICCs from the TIGER-LC and ICGC projects 
mostly from the Eastern countries (T-I cohort). 
Consistently, Cluster1 and Cluster2 mutations still 
showed strong mutually exclusivity with statistical 
significance (Figure S3C, OR = 0.1542, P < 0.0001 in 
the MSKCC cohort; Figure S3D, OR = 0.1361, P = 
0.0004 in the T-I cohort). By contrast, PTEN/PIK3CA, 
SWI/SNF complex mutations were distributed 
universally among these two clusters. In these two 
NGS-based cohorts (MSKCC and T-I cohort), 
Cluster1B ICCs also exhibited the highest TMB level 
compared to Cluster2 and Cluster3 cases (Figure S4). 

Impact of clinical factors on the mutual 
exclusivity between Cluster1 and Cluster2 
mutations 

We further investigated the impact of major 
clinical factors on the mutual exclusivity between 
Cluster1 and Cluster2 mutations using the combined 
cohort. Cluster1 and Cluster2 mutations showed 
similar odds ratios (ORs) of mutual exclusivity among 
different gender (male/female), age (≥ 65 / < 65), and 
etiologies (Table S8). The OR of mutual exclusivity 
was higher in Western population than Eastern 
population (OR = 0.16 vs OR = 0.09, Table S8). 
Notably, tumor stage showed the highest impact on 
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the mutual exclusivity between Cluster1 and Cluster2 
mutations. The OR of Cluster1 and Cluster2 
mutations in stage III/IV cases were more than 3 
times higher than stage I/II cases (OR = 0.13 vs OR = 
0.04, Table S8). For 16 Cluster1/2 co-mutant cases 
with clinical staging information available, 14 cases 
were stage III/IV (87.5%) (Table S9), which is 
significantly higher than cases harboring Cluster1 
mutations (66.2%) or Cluster2 mutations (55%) only, 
indicating this rare Cluster1/2 co-mutation pattern 
may be the consequence during tumor evolution. 

Different mutational clusters exhibit distinct 
clinicopathological features 

Next, we compared the clinicopathological 
features of different clusters. Cluster1 mutations were 
more frequently found in Eastern populations, while 
Cluster2 mutations were more prevalent in Western 
populations (Figure 2A). Etiologically, Cluster2 was 
more often found in ICCs without clear risk factors 
and viral hepatitis related ICCs, but rarely found in 
cases with liver fluke infection or hepatolithiasis. 
while Cluster1A and Cluster1B were more frequently 
found in cases with liver diseases such as viral 
hepatitis, liver fluke infection and hepatolithiasis 
(Figure 2B). We also compared the prevalence of 

different mutational clusters between unpaired 
primary tumors and metastases in 212 ICC cases from 
the MSKCC cohort (145 primary tumors and 53 
metastases). As shown in Figure 2C, Cluster1 
mutations were significantly enriched in metastatic 
cases (P = 0.018). Cluster2 mutations showed similarly 
frequency between primary tumors and metastases, 
and Cluster3 mutations were more prevalent in 
primary than metastases. In addition, Cluster1A ICCs 
showed the highest levels of CA19-9, while Cluster2 
ICCs exhibited much lower levels of CA19-9 than 
Cluster1A and Cluster1B (Figure 2D). Cluster1A ICCs 
were more enriched in stage III/IV cases compared 
with other clusters (Figure 2E).  

According to histological morphology, ICC can 
be classified into small ductular and large bile duct 
subtypes. We thus explored the histological 
phenotypes of different mutational clusters in 94 ICC 
cases from the internal validation cohort. It was 
interesting to note that most of Cluster1 ICCs, 
especially Cluster1A cases showed large bile duct 
microscopical manifestations, while Cluster2 ICCs 
dominantly showed the phenotype of small duct 
(Figure 2F).  

 

 
Figure 2. Correlation of mutational clusters with clinicopathological factors, histological morphologies in ICC. (A) Population distributuion, (B) etiological 
factors, (C) primary/metastases distribution, (D) CA19-9 levels and (E) AJCC staging for ICC between different mutational clusters. (F) Representative macroscopic and 
microscopic image of ICC cases with different mutational clusters. 
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Figure 3. Correlation of mutational clusters with prognosis in ICC. (A) OS and RFS of surgical resected ICCs from the combined cohort showed different prognosis 
between mutational clusters. Log-rank test and Cox regression were used for the analysis. (B) Cluster1 showed significantly shorter OS and RFS than Cluster2/3 from the major 
subcohorts. (C) Cluster1 cases showed higher rate of progression on first line gemcitabine/platinum-based treatment (n = 104) and relatively worse OS compared with 
Cluster2/3 cases in metastatic/recurrent ICCs. (D) The distribution of mutational clusters in the “poor” and “good” signatures from independent gene expression profiling 
datasets. 

 

Different mutational clusters of ICCs showed 
distinct clinical outcomes 

We first evaluated the correlates of mutational 
clusters with clinical outcomes in surgical resected 
ICCs from the combined cohort. As shown in Figure 
3A, Cluster1 mutations was significantly associated 
with worse overall survival (OS) and recurrence-free 

survival (RFS). In contrast, cases with Cluster2 
mutations showed similar RFS but relative longer OS 
compared with Cluster3 ICCs. Among Cluster1 cases, 
Cluster1A and 1B ICC cases showed similarly poor 
prognosis (Figure S5A-B). The prognostic value of 
Cluster1 mutations were highly consistent in the 
major sub-cohorts (Figure 3B and Figure S6A-G). 
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Consistently, the univariate and multivariate analysis 
showed that Cluster1 mutation status was an 
independent risk factor for OS and RFS in 345 surgical 
resected ICC cases from China (FUDAN and EHBH 
cohorts) (Figure S7A-B). Differently, Cluster1 
mutation status did not show significant prognostic 
value in surgically resected ECCs (Figure S6H), 
suggesting that the observed prognostic value of the 
mutational clusters may be ICC specific. 

Then we also investigated the prognostic values 
of different mutational clusters in advanced ICCs 
receiving palliative therapy. Among 104 
metastatic/recurrent ICCs receiving first-line 
treatment (gemcitabine/platinum based) from the 
MSKCC cohort, Cluster1 cases showed higher rate of 
progression on first line treatment and relatively 
worse OS compared with Cluster2/3 cases, though 
the survival difference was not statistically significant 
(Figure 3C). 

Together, the above results support an ICC 
specific prognostic value of Cluster1 mutations, while 
Cluster2 mutations show more favorable outcome. 

Deleterious partnering of Cluster1 mutations 
defined more invasive behaviors and a “poor 
prognosis” molecular signature 

To investigate the biological basis of this 

prognostic distinction among the mutational clusters, 
we then analyzed the mutational status of 15 
cholangiocarcinoma cell lines. All the tested cell lines 
harbored at least one KRAS, TP53, SMAD4 or IDH1 
mutation and showed Cluster1 or Cluster2 mutational 
pattern, except for RBE cells which harbor a rare 
concurrent KRAS and IDH1 mutations (Figure S8A). 
Cluster1 ICC cells showed significantly higher 
proliferative ability than Cluster2A ICC cells both in 
vitro and in vivo (Figure S8B-C).  

A previously reported 238-gene classifier has 
classified cholangiocarcinoma into two prognostically 
different subclasses (‘good prognosis’ and ‘poor 
prognosis’) [41]. Using supervised clustering based on 
the enrichment score of the 238 genes, we were able to 
divide cholangiocarcinoma cases into three 
(poor/good/mixed) groups in five independent gene 
expression profiling datasets (Figure 3D). 
Interestingly, we found that Cluster1 ICCs and ECC 
cases were mostly enriched in the “poor prognosis” 
subtype, while Cluster2 ICCs was mostly grouped in 
“good prognosis” subtype.  

Together, Cluster1 ICC showed more aggressive 
biological behaviors and molecular features, 
correlated with the poorest clinical prognosis.  

 

 
Figure 4. Correlation of different mutation clusters with ICC gene expression signatures. (A) The differential distribution of mutational clusters in CLC 
differentiation signatures in 3 different gene expression profiling datasets. (B) The differential distribution of mutational clusters in HpSC-ICC signatures in 3 different gene 
expression profiling datasets. (C) The differential distribution of mutational clusters in IDH1/2 mutation-like methylation signatures in 3 different gene methylation profiling 
datasets. 
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Different mutational clusters demonstrated 
distinct histology and lineage related 
molecular features 

Using a recently proposed cholangiolo-
cellular-differentiation gene expression signature (CD 
signature) [42], we were able to divide CCA cases into 
CD phenotype, non-CD phenotype or mixed 
phenotype in three independent cohorts (Figure 4A). 
Interestingly, most Cluster2 ICCs were belong to the 
CD subtype, whereas Cluster1 ICCs and ECCs were 
mostly clustered into non-CD phenotype or mixed 
phenotype (Figure 4A). It was previously reported 
that a subset of ICC harbor stem cell features and is 
originated from liver progenitor cells [43]. Using a 
hepatic stem cell-like (HpSC) gene expression 
signature described previously [44], we further 
divided CCAs into three (HpSC/non-HpSC/mixed) 
subtypes in the above three cohorts (Figure 4B). Most 
of Cluster2 ICC cases were enriched in the HpSC 
subtype, while Cluster1 ICCs and ECCs were mostly 
divided into non-HpSC or mixed phenotype. On the 
basis of DNA methylation, we found that Cluster2 
ICCs exhibited significantly higher DNA methylation 
levels than Cluster1 ICCs, and that in Cluster2 ICCs, 
FGFR2-fus or BAP1-mutated ICCs (without IDH1/2 
mutation) showed similar DNA methylation pattern 
with IDH-mutated ICCs (Figure 4C).  

In addition, we also identified distinct oncogenic 
gene expression signatures among different clusters. 
For instance, Cluster1 showed the highest expression 
level of a series of previously reported metastasis or 
progression related genes in ICC, such as TMPRSS4, 
S100A4, S100P, PTEGS, MUC1, COX-2, IL-6 and 
CEACAM6 (Figure S9) [45-50]. In contrast, Cluster2 
ICCs showed higher expression of a series of growth 
factors or receptors, such as PDGFD and FGFR2/3/4, 
all of which are known to play important roles in 
supporting ICC cell growth by mediating 
cancer-stromal interaction (Figure S10A) [51, 52]. 
Notably, higher expression of FGFR2/3/4 and its 
downstream factors (GAB1, GRB2 and PTPN11) was 
observed in Cluster2 ICCs compared with Cluster1/3 
cases (Figure S10B). This indicated that FGFR2/3/4 
pathway activation exist across the Cluster2 ICCs, and 
FGFR2/3/4 targeted therapy may be potential for all 
Cluster2 ICCs, not only limited to FGFR2-fus 
(Cluster2B) ICCs. 

IDH/FGFR2-fus/BAP1 and TP53/SMAD4 
co-mutation pattern further defined two 
prognostically different subsets of CCA-like 
HCC 

As the three most common primary liver cancer 
(PLC) subtypes, HCC, ICC and CHC sometimes 

showed overlapping phenotypes, such as a previously 
proposed cholangiocarcinoma-like HCC (CLHCC) 
subtype [53]. Using the CCA like traits (CC signature), 
we divided 407 TCGA-PLC (373 HCC, 36 CCA and 10 
CHC) cohorts into a continuous liver cancer spectrum. 
Notably, 175 HCC/CHC cases showed CCA-like 
signature and clustered together with the 36 CCA 
cases, indicating that they intrinsically mimicked 
CCA molecular features (Figure 5A). Consistent with 
previous studies [53], the CCA, CLHCC and classical 
HCC showed different prognosis (Figure 5B), and the 
lineage specific markers (EPCAM, CD133, KRT19, 
CEACAM6, HNF4A and ALB) were also differentially 
expressed among these three subtypes (Figure 5C). 
Consistently, the microscopic phenotypes of these 
CLHCCs turned out to be “CCA-like” compared with 
the histological morphology of well differentiated 
HCCs (Figure 5D). Interestingly, we found 
significantly higher percentage of TP53/SMAD4 
mutations and IDH/FGFR2-fus/BAP1 mutations, 
while lower mutation rate of CTNNB1 in CLHCC 
subtype than classical HCC subtype (Figure 5A). 
Notably in CLHCC, four of the five IDH1/2 mutant 
cases and both the two FGFR2-fus cases harbored 
concurrent BAP1 mutations, and two of the four 
SMAD4 mutations were co-mutated with TP53 
mutations. Consistent with in ICC, these two clusters 
also tend to be mutually exclusive (OR = 0.061475, P = 
0.0002, Figure 5E), and Cluster1B CLHCCs also 
showed significantly shorter OS and RFS compared 
with Cluster2 CLHCCs (Figure 5F). 

The ICC cells bearing different clustering 
mutations demonstrated different sensitivities 
to molecular targeted treatments  

Considering the molecular distinctions between 
Cluster1 and Cluster2 ICCs, it is potentially 
interesting to compare their responses to molecular 
targeted treatments. We screened six ICC cell lines 
(including two Cluster1A, two Cluster1B and two 
Cluster2A mutant cell lines) against a panel of 
compounds which are being tested in clinical trials or 
FDA-approved, including ones targeting tyrosine 
kinase receptors, epigenetic regulation, metabolism, 
DNA damage, and cell cycle (Figure 6A and Table 
S10). Cell viability assays demonstrated that no 
compound could selectively decrease the viability of 
Cluster1A and 1B mutant ICC cells (Figure 6A). 
Strikingly, Cluster2A mutant ICC cells exhibited 
increased sensitivity to Dasatinib, Vorinostat, JQ1, 
iBET, Olaparib, and Niraparib than Cluster1A mutant 
cells (Figure 6A-B). Considering that Dasatinib and 
PARP1 inhibitors have been reported in IDH1/2 
mutant ICC or other cancers [54-56], we tested the 
effect of JQ1 and Vorinostat on clone formation ability 
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in four ICC cell lines. As shown in Figure 6C, JQ1 and 
Vorinostat significantly inhibited Cluster2A (IDH1 
mutant) ICC cells, but not Cluster1A (KRAS/TP53 
mutant) ICC cells. 

The results from this preliminary study suggest 
that the molecular subtypes of ICCs may be related to 
distinct sensitivities to certain targeted therapies. A 
larger scale drug screening based on different 
mutational clusters of ICC deserves further 
investigation. 

Gene expression profiles integration 
converged on S100P and KRT17 as specific 
biomarkers for mutation-free ICCs  

As mentioned above, Cluster1A and Cluster2 
ICCs show distinct clinical features, cell of origins, 
and therapeutic responses. By comparing the gene 
expression profiles of Cluster1A and Cluster2 from 
three independent ICC gene expression profiling 
datasets (Figure 7A), we obtained a 52-gene set that 
was universally differentially expressed between 

 

 
Figure 5. The existence of Cluster1B (TP53/SMAD4) and Cluster2 (IDH/FGFR2-fus/BAP1) mutations in CCA-like HCC. (A) Supervised clustering of CCA, CHC 
and HCC based on CCA-like HCC expression signature. (B) Kaplan-Meir plot analyses for OS between CCA, HCC and CCA-like HCC. (C) Analysis of HCC and ICC marker 
gene expression in CCA, CLHCC and HCC, respectively. Statistical significance was determined by Mann-Whitney test. (D) The representative histological characteristics from 
the group of CCA-like HCC samples, poor differentiated HCC and well differentiated HCC from TCGA cohort. (E) The mutually exclusive pattern of TP53/SMAD4 mutations 
with IDH/FGFR2-fus/BAP1 mutations in CCA-like HCC cohort. (F) Kaplan-Meir plot analyses for OS and RFS between Cluster1B mutations (TP53/SMAD4) and Cluster2 
mutations (IDH/FGFR2-fus/BAP1) in CCA-like HCC. 
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Cluster1A and Cluster2 ICCs (with average fold 
change > 2 and P < 0.05 in all three datasets) (Table 
S11). Among the genes (average fold change > 4) that 
mostly discriminated Cluster1A and Cluster2 (Figure 
7A), the top two genes S100P and KRT17 were both 
prognostic markers in Andersen’s CCA survival 
signature and Sia D’s ICC recurrence signature, as 
well as the CD signature (Figure 7A). We found that 
S100P and KRT17 were positively correlated with 
each other in all nine ICC gene expression datasets 
(Figure S11). Moreover, ICCs with high expression of 
both S100P and KRT17 was associated with worse 
prognosis than those with low expression of both 
S100P and KRT17 (Figure S12). We then assessed the 
protein levels of S100P and KRT17 in 94 patients from 
the internal validation cohort, including 39 cases of 
Cluster1, 21 cases of Cluster2, and 34 cases of 
Cluster3. In according with mRNA expression result, 
IHC staining revealed that Cluster1A ICC showed 
significantly higher proportion of S100P- and 
KRT17-positive staining than the other clusters 
(Figure S13), indicating that S100P and KRT17 may 
become the cluster-specific, prognosis and 
histology-relevant biomarkers in ICC.  

In addition, previous studies [57] and our 
present study indicated that high CA19-9 level was 
also cluster-specific, prognostic and histology 
relevant. To construct a clinicopathological score (CP 
score) system that permit simple and cost-effective 

classification of ICC in clinical practice, we finally 
evaluated the clinical application potential of S100P 
(positive/negative) and KRT17 (positive/negative) in 
combination with CA19-9 (≥ 100 U/ml / < 100U/ml). 
Low CP score (0 and 1) could well defined Cluster2 
ICCs, while Cluster1 ICCs were mostly enriched in CP 
score high (2 and 3) (Figure 7B). ROC curve analysis 
suggested that the sensitivity and specificity of CP 
score for cluster prediction was much higher than that 
of CA19-9 (sensitivity 84.6% vs 66.7%; specificity 100% 
vs 95.2%) (Figure S14). This indicated that CP score 
had a better performance compared with CA19-9 
alone for distinguishing Cluster1 ICCs from Cluster2 
ICCs. Furthermore, this score system could also 
stratify Cluster3 cases into two subsets with distinct 
clinical and biological relevance. Cluster3 cases with 
high CP scores showed dismal outcomes, high TNM 
stages, large bile duct phenotype and high CA19-9 
level compared with cases with low CP scores (Figure 
7C-D).  

Taken together, these results suggest that S100P 
and KRT17 combined with CA19-9 may act as lineage 
dictating markers helping to differentiate mutational 
clusters in ICC. Combining clustering mutations and 
subtype-specific biomarkers, we finally propose a 
clinically applicable clustering strategy, which can be 
instructive to ICC prognostic stratification, molecular 
classification, and therapeutic optimization (Figure 8). 

 
 

 
Figure 6. Different responses to small molecular drugs among ICC cell lines with different mutation clusters. (A) Heat map illustrating the median-centered 
Log(IC50) of 6 ICC cell lines screened across 19 clinically relevant compounds. (B) Cluster1 and Cluster2 cell lines were treated with dasatinib, olaparib, JQ1 and vorinostat; 
log(IC50) was determined at day 3 post-treatment. (C) Crystal violet staining of viable cells treated with JQ1 and vorinostat. 
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Figure 7. Integrated clinico-pathological score (CP Score) further stratified mutational clusters into biological relevant subtypes (modified clusters). (A) 
Venn diagram 1 showing overlaps of differential expressed genes between Cluster1A and Cluster2 mutations from 3 independent cohorts. Venn diagram 2 showing overlap of 
10 prognosis related genes from 2 well established gene signatures. Venn diagram 3 showing overlap of cluster specific, prognosis related and histological relevant genes. Then 
a clinicopathological score (CP score) comprising S100P, KRT17 and CA19-9 was constructed. (B) A modified clustering system stratified by clinicopathological score could 
better reflect the biological relevant of the mutational cluster. (C) Kaplan-Meir plot analyses for OS and RFS among different modified clusters. (D) AJCC 8th staging, microscopic 
morphology and CA19-9 levels for ICC between classical-like and progenitor-like subclusters from Cluster3 patients. 

 
Figure 8. Summary of clinical management procedure and characteristics of the subtypes of ICC 
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Discussion 
In this study, by investigating the pair-wise 

co-occurrence or mutual exclusivity of driver 
mutations, we described the cooperative landscape of 
the driver mutations and uncovered the mutational 
basis of ICC diversity. Notably, most ICCs mutually 
exclusively harbor Cluster1 or Cluster2 mutations, 
which will be conducive to establish a clinically 
applicable strategy to rapidly and precisely identify 
different prognostic and biological subtypes of ICCs. 

With the purpose of better understanding the 
molecular heterogeneity of ICC, several gene 
expression profiling-based subtyping models have 
been proposed to classify ICC into putative discrete 
subtypes, such as the “good and poor” signature [41], 
“proliferation and inflammation” signature [58], 
“HpSC” signature [43] or others [16, 20, 42, 59]. More 
recently, integrative multi-omics strategies were also 
used to establish subtyping system for 
cholangiocarcinoma [18, 19, 60]. All these studies 
contributed to a more comprehensive understanding 
of the molecular heterogeneity of ICC from different 
perspectives. However, these gene expression or 
DNA methylation based subtyping signatures 
included hundreds of genes, which greatly limited 
their translation into clinical practice. In addition to 
the intrinsic molecular traits of malignant cells, tumor 
transcriptional subclasses differ according to the 
composition of the tumor microenvironment, 
especially the existence of prominent stromal cells [61, 
62]. These disadvantages may restrict their 
applications in the clinical practice, and a clinically 
applicable, molecular relevant clustering strategy is 
still lacking in ICC.  

Malignant transformation is a highly cooperative 
process, during which functionally synergistic gene 
mutations are frequently co-selected and observed 
together in the same tumor subtypes, and their 
cooperative effects are associated with disease 
progression and clinical outcome. Supporting this 
notion, the co-association or mutual exclusivity of 
IDH1/2, TP53 and CIC/FUBP1 mutations construct 
the basis of a new molecular pathological 
classification in gliomas [63, 64]. Similarly, according 
to the mutational status of TP53, MDM2, RAS, and 
FGFR3, non-hypermutated upper urinary tract 
urothelial carcinoma (UTUC) was classified into four 
subtypes showing unique co-alteration/mutually 
exclusive patterns, and different mutational subtypes 
have discrete profiles of gene expression, tumor 
location/histology, and clinical outcome [65]. Using 
the mutation relevant clustering strategy, ICC was 
previously divided into three subgroups based on the 
genomic perturbation of KRAS, TP53 and IDH1 [66]. 

Based on comprehensive analysis, we uncovered the 
mutational basis of ICC diversity and divided ICCs 
into 3 mutational clusters by the mutation status of 
seven driver genes. Traditionally, TP53, KRAS and 
SMAD4 mutations are classical gene mutations that 
are ubiquitously distributed among pancreatobiliary 
malignancies. Previous preclinical studies have also 
revealed that these gene mutations corroborated to 
promote the initiation and metastasis in these cancer 
types [67-69]. Supporting this, our result revealed that 
these mutations tended to be co-occurring with each 
other in ICC. Compared to the trans-cancer type 
distributing pattern of Cluster1 mutations, IDH1/2, 
BAP1 mutations and FGFR2 fusions in Cluster2 were 
predominantly identified in ICC but rare in ECC or 
pancreatic ductal adenocarcinoma (PDAC), and our 
result revealed that all of the three genomic alterations 
tended to be mutually exclusive with Cluster1 
mutations with extremely low overlapping 
frequencies. Notably, our mutational clusters were 
well relevant to most of the previously proposed gene 
expression signatures, the prognostic signature [41], 
the the CD signature [42] and the HpSC signature [43] 
as we demonstrated above.  

Although the mutually exclusive of Cluster1 and 
Cluster2 mutations tend to be extremely significant, 
there are a still mall proportion of cases harboring 
both Cluster1 and Cluster2 mutations (31/1481, 2.1%). 
For 16 Cluster1/2 co-mutant cases with clinical 
staging information available, we found that most 
cases were stage III/IV (14/16, 87.5%). The proportion 
of stage III/IV was significantly higher in these 
Cluetr1/2 co-mutated cases than those with Cluster1 
or Cluster2 mutations only. Consistently, in one study 
not included in the current research showing the 
highest Cluster1/2 co-mutation rate (7/55, 12.7%), 
although the individual clinical staging information 
was not available, 51/55 (92.7%) cases were stage 
III/IV ICCs [70]. These results indicated that this rare 
Cluster1/2 co-mutation pattern may be the 
consequence during tumor evolution and more 
enriched in advanced stage ICCs. 

Clinically, the prognostication of ICC has long 
been relegated to clinical staging/scoring systems or 
nomograms [71-74], with an absence of stable 
molecular markers. A major clinically relevant finding 
of this study is that clustering of ICC based on 
Cluster1 mutation status may be predictive of 
prognosis (OS and RFS), providing the potential of 
adding a reliable “biological” parameter to improve 
the accuracy of currently used clinical prognostic 
systems. Previous studies have already revealed that 
activating mutations in the KRAS oncogene and 
inactivating mutations/deletions in SMAD4 and TP53 
tumor suppressor genes are significantly correlated 
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with poor clinical outcomes in ICC [13, 16]. Using 
independent datasets, we show here that the 
combination of Cluster1 mutation status is also a 
strong prognostic marker for poor prognosis (shorter 
OS and RFS after surgical resection), even adjusting 
for TNM stage and CA19-9 level. We also found that 
Cluster1 mutant ICCs were more prevalent in 
metastatic lesions compared with Cluster2/3 
mutations. At molecular levels, we found that 
Cluster1 mutant ICC and ECC cases were mostly 
enriched in the ‘poor prognosis’ group, while Cluster2 
mutations were mostly clustered into the ‘good 
prognosis’ group. Taken together, we propose that the 
Cluster1 mutation status is a strong predictor for poor 
prognosis, including survival, recurrence and 
metastasis. High-risk clinicopathological factors (e.g. 
CA19-9 level, TNM stage and metastasis), highly 
proliferative and invasive biological behavior, and the 
enrichment of ‘poor prognosis molecular signature’ 
can well explain the poor prognosis of Cluster1 
mutations from clinical, biological and molecular 
perspectives. We believe that adding biological 
(non-anatomic) factors such as Cluster1 mutations 
may provide an important optimization for currently 
used ICC prognosis prediction models. Although the 
mutational clusters also existed in ECC, here we 
found that the prognostic value of Cluster1 mutations 
was not applicable, indicating ECC and ICC were not 
only distinct in location, but also in intrinsically 
biological behaviors.  

The first-line therapeutic choice for 
advanced-stage ICC is extremely lacking except 
gemcitabine/cisplatin combined chemotherapy [75]. 
In the second-line setting, although several targeting 
therapeutic drugs (ivosidenib and pemigatinib) have 
been approved for clinical treatment, the low 
response rate (objective response rate = 2% for 
ivosidenib from the ClarIDHy study) [76] or high rate 
of primary/acquired resistance still restrain their 
therapeutic efficacy [77]. In this study, we employed a 
panel of small molecular drug screening to search for 
potential cluster-specific dependencies of ICC cell 
lines, and several potential therapeutic targets were 
identified in Cluster2A (IDH1 mutant) ICC cell lines. 
Among them, we found increased sensitivity of 
Cluster2A mutant ICC cells to Dasatinib and PARP 
inhibitors as previously reported in ICC or other 
cancer types [54, 56]. Moreover, we also found 
increased sensitivity of Cluster2A mutant cell lines to 
BET inhibitors and HDACs inhibitors. Considering 
the low response rate of IDH1 mutant CCA to 
ivosidenib, the therapeutic vulnerabilities of IDH1 
mutant CCA to these drugs deserve further 
investigation. 

In the field of oncoimmunology, extensive efforts 

have been made recently to identify robust predictive 
markers of the therapeutic response to immune 
checkpoint inhibitors. Several markers had been 
proposed, including tumor PD-L1 expression, high 
TMB, POLE mutation and DNA mismatch repair 
deficiency. In the current study, higher TMB was 
observed in Cluster1 gene mutant tumor tissues 
compared with Cluster2 ICCs. A positive correlation 
between PDL-1 level and TP53 mutation in CCA has 
also been reported in a recent study [78]. Interestingly, 
the positive relation of PD-L1 level and TP53/KRAS 
mutation has also been reported in lung cancer [79], 
and recent studies has found potential predictive 
value of TP53 and KRAS mutation status for response 
to PD-1 blockade immunotherapy in lung 
adenocarcinoma [80, 81] Mechanistically, recent 
studies have revealed that PD-L1 mRNA is regulated 
by oncogenic RAS signaling and TP53 mutation [82, 
83]. The above evidence indicated that the mutational 
clusters of ICCs may have potential roles in predicting 
the therapeutic response to anti-PD-1 therapies, which 
deserves further investigation. 

Another clinically relevant finding of this study 
is the identification of two biomarkers (S100P and 
KRT17) derived from integrated gene expression 
profiling analysis. Furthermore, we propose that 
S100P and KRT17 in combination with CA19-9 may 
serve as cluster-specific, prognosis and histology 
relevant biomarkers to optimize the mutational 
classification and prognostication. These three 
markers are chosen for the following reasons, Firstly, 
they are the most prominent pathological or clinical 
markers to discriminate Cluster1A and Cluster2 ICCs 
(with > 8-fold change). Secondly, they are all 
independent prognostic factors in ICCs as reported by 
us and others [41, 46, 57, 58]. Thirdly, they are all 
parameters that are differentially expressed in CLC 
and large bile duct type ICC [42]. Furthermore, S100P 
and KRT17 have been reported to play critical roles in 
malignant progression and metastasis in ICC and 
other malignancies [46, 84]. In our current study, the 
CP-score can further divide the “mutation-free” 
Cluster3 ICC into CP-high and CP-low subtypes, 
which display distinct prognosis and histological 
features. The S100P(+)/KRT17(+)/CA19-9(high) 
group showed Cluster1A-like prognostic and 
histological features, such as large bile duct 
differentiation phenotype. In contrast, the 
S100P(-)/KRT17(-)/CA19-9(low) group showed more 
similarities with Cluster2 ICC, with CLC 
differentiation phenotype and better prognosis.  

In conclusion, our study provides evidence that 
routine gene test for the seven mutated genes, 
together with the evaluation of S100P/KRT17 
expression and CA19-9 level, represent robust 
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biomarkers to identify clinically and biologically 
distinct subtypes of ICC. Moreover, we show that 
different mutational clusters undergo distinct 
mechanisms of tumorigenesis and thereby differ in 
drug responsiveness, which would open the door for 
a more precise therapeutic strategy for this refractory 
malignancy. In the future, selectively prognostic and 
therapeutic stratification may be suggested in clinical 
practice for ICC patients with different mutational 
clusters. 
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